

# Optimizing the Sensing Properties of Race-Track Fluxgates as a Function of Core Layers

Hava Can<sup>1,b)</sup>, Emel Özkök<sup>1,2,c)</sup>, Fedai İnanır<sup>2,d)</sup>, Ivan Skorvanek<sup>3,e)</sup>, Peter Svec Sr.<sup>4,f)</sup>, and Uğur Topal<sup>1,a)</sup>

<sup>1</sup>*TÜBİTAK-UME National Metrology Institute, P.K. 54, 41470 Gebze, Kocaeli, Turkey*

<sup>2</sup>*Yıldız Technical University, Physics Department, Davutpaşa, İstanbul, Turkey*

<sup>3</sup>*Institute of Experimental Physics SAS / LNAM, Kosice, Slovakia*

<sup>4</sup>*Institute of Physics SAS / DMP, Bratislava, Slovakia*

<sup>a)</sup> Corresponding author: [ugur.topal@tubitak.gov.tr](mailto:ugur.topal@tubitak.gov.tr)

<sup>b)</sup> [hava.can@tubitak.gov.tr](mailto:hava.can@tubitak.gov.tr)

<sup>c)</sup> [kucukemel981@gmail.com](mailto:kucukemel981@gmail.com)

<sup>d)</sup> [inanir@yildiz.edu.tr](mailto:inanir@yildiz.edu.tr)

<sup>e)</sup> [skorvi@saske.sk](mailto:skorvi@saske.sk)

<sup>f)</sup> [peter.svec@savba.sk](mailto:peter.svec@savba.sk)

**Abstract.** In this study, we suggest an alternative design of the fluxgate sensors at race-track geometry. We have investigated the influence of the number of core layers on the sensor performance by making sensitivity and noise measurements. With this purpose, we have prepared four sensors which all have the same characteristics but consist of one, two, three and five layers of the magnetic ribbons. After finding the optimal number of core layers, optimization works were carried out on that sensor. We have finally achieved to get a sensitivity of  $\sim 166$  kV/T and a noise level of  $18$  pT/ $\sqrt{\text{Hz}}$  at  $1\text{Hz}$  respectively.